Titanium and titanium alloys

Josef Stráský
Lecture 2: Fundamentals of Ti alloys

- Polymorphism
 - Alpha phase
 - Beta phase
- Pure titanium
- Titanium alloys
 - α alloys
 - $\alpha + \beta$ alloys
 - β alloys
- Phase transformation $\beta \rightarrow \alpha$
- ω–phase
- Hardening mechanisms in Ti
 - Hardening of $\alpha + \beta$ alloys
 - Hardening of metastable β alloys
Polymorphism

• Pure titanium is polymorphic – it exists in more crystallographic structures (phases)
 • Similarly to iron

• Above 882°C the titanium is body-centered cubic material (bcc) – β – phase

• Upon cooling below 882°C – (so-called β–transus temperature) – β – phase martensitically transforms to hexagonal close-packed structure - α – phase
Stable phases – pure titanium

- **β** – phase – stable above 882°C (β–transus temperature)
- Under room temperature, only **α** – phase is stable

Hexagonal close-packed lattice (hcp)
Phase **α**

Body-centered cubic lattice (bcc)
Phase **β**

6 atoms / 0.106 μm³ = **56,6**

2 atoms / 0.0366 μm³ = **54,6**

This difference allows dilatometry studies.
HCP – hexagonal closed packed

α – phase

Plane - \((hkl) \)
Set of planes - \{hkl\}
Direction - \([UVW]\)
Set of directions – \(<UVW>\)

c/a(Ti) = 1.588 < 1.633 (optimal)
c/a(Cd) = 1.886
c/a(Zn) = 1.856
c/a(Mg) = 1.624
c/a(Co) = 1.623
c/a(Zr) = 1.593

Slip systems:
Principal: Prismatic \{1 0 -1 0\} \(<1 1 -2 0>\)
Secondary: Basal \{0 0 0 1\} \(<1 1 -1 0>\)
Other:
Pyramidal \{1 0 -1 1\} \(<1 1 -2 0>\) and \{1 1 -2 2\} \(<1 1 -2 3>\)
HCP – hexagonal closed packed

Slip systems
Principal: Prismatic \{1\ 0\ -1\ 0\} <1\ 1\ -2\ 0>
Secondary: Basal \{0\ 0\ 0\ 1\} <1\ 1\ -1\ 0>
Other:
Pyramidal \{1\ 0\ -1\ 1\} <1\ 1\ -2\ 0> and
\{1\ 1\ -2\ 2\} <1\ 1\ -2\ 3>

![Basal Slip System](image1)

Basal-<\mathbf{a}>
(0001) <1120>, 3

![Prismatic Slip System](image2)

Prismatic-<\mathbf{a}>
\{10\bar{1}0\} <11\bar{2}0>, 3

![Pyramidal Slip System](image3)

Pyramidal-<\mathbf{a}>
\{10\bar{1}1\} <11\bar{2}0>, 6

![1st Order Pyramidal Slip System](image4)

1st order Pyramidal-<\mathbf{c} + \mathbf{a}>
\{10\bar{1}1\} <11\bar{2}3>, 12

![2nd Order Pyramidal Slip System](image5)

2nd order Pyramidal-<\mathbf{c} + \mathbf{a}>
\{11\bar{2}2\} <11\bar{2}3>, 6
The effect of alloying elements on phase composition

• Alloying elements affect the beta-transus temperature
• α – stabilizing elements – increase beta-transus temperature
• β – stabilizing elements – increase beta-transus temperature
 – Isomorphous – completely soluble in solid solution
 – Eutectoid – intermetallic particles are created
The effect of alloying elements on phase composition

- Neutral elements – \(\text{Zr, Sn} \)
- \(\alpha \) - stabilizing elements – \(\text{Al, O, N, C} \)
- \(\beta \) - stabilizing elements – isomorphous – \(\text{Mo, V, Ta, Nb} \)
- \(\beta \) - stabilizing elements – eutectoid – \(\text{Fe, Mn, Cr, Co, Ni, Cu, H} \)
Titanium alloys

• Pure Ti at room temperature \rightarrow only α – phase
• Low-content of β-stabilizing elements (and/or outweighed by α -stabilizing elements) \rightarrow only α – phase is stable at RT \rightarrow so-called α – alloys

• Increased content of β-stabilizing elements
 • β – phase becomes stable at room-temperature
 • $\alpha + \beta$ alloys
Titanium alloys

- Further increased content of β-stabilizing elements
 - The temperature „martenzite start“ of phase transition $\beta \rightarrow \alpha$ is decreased below room temperature
 - Phase α is not formed during quenching
 - **Metastable β-alloys**
 - During annealing below β-transus temperature, the α phase is created until the balance composition is achieved
Titanium alloys

- Even more increased content of β-stabilizing elements
 - Beta transus temperature can be decreased below RT
 - After cooling to room temperature, β phase remain stable
 - Stable β-alloys
Molybdenum equivalence

• Mo: one of the most important β – stabilizing elements
• Comparison of β– stabilizing effect of different elements
 → so-called molybdenum equivalence
• $[\text{Mo}]_{eq} = [\text{Mo}] + 0,67 [\text{V}] + 0,44 [\text{W}] + 0,28 [\text{Nb}] + 0,22 [\text{Ta}] +$
 $+ 2,9 [\text{Fe}] + 1,6 [\text{Cr}] + 1,25 [\text{Ni}] + 1,7 [\text{Mn}] + 1,7 [\text{Co}] - 1,0 [\text{Al}]$
• i.e. Vanadium content must be 1.5 times higher then Molybdenum to achieve the same effect on stability of beta phase
• i.e. Iron is three times stronger beta stabilizer than Mo a 4x than V
• Molybdenum equivalence is only empirical rule based on analysis of binary alloys
• Molybdenum equivalence cannot be used quantitatively to compute beta transus temperature or equilibrium phase composition
 – Especially in the case of ternary and more complicated alloys
Aluminium equivalence

• Less used analogy of molybdenum equivalence for α - stabilizers

• Al: one of the most important α – stabilizing elements

\[\text{[Al]}_{\text{eq}} = \text{[Al]} + 0.33 \text{[Sn]} + 0.17 \text{[Zr]} + 10 \text{[O + C +2N]} \]

• In the case that Al equivalence is higher than approx 9% (some sources say 5%), then Ti₃X intermetallic particles are formed

• The effect of Zr remains unknown and depends strongly on the content of other alloying elements
Phase transformation $\beta \rightarrow \alpha$

- Occurs below β-transus temperature
- In pure Ti, α-alloys and $\alpha + \beta$ alloys
 - \rightarrow martensitic transformation
 - But not until equilibrium phase composition
 - Followed by growth of particles (lamellae)

- In metastable β–alloys
 - Precipitation of α–particles
 - Homogeneous precipitation
 - Heterogeneous precipitation
 - Grain boundaries
 - Particles of other phases
 - Chemical inhomogeneities
Phase transformations in metastable β alloys

1. Phase separation: $\beta \rightarrow \beta_{\text{lean}} + \beta_{\text{rich}}$ také $\beta \rightarrow \beta' + \beta$
 - Occurs in strongly stabilized β-alloys
 - β-stabilization elements form clusters via spinodal decomposition $\rightarrow \beta_{\text{rich}}$ regions

2. Formation of ω–phase
 - Less stabilized β-alloys
 - Formation of particles ω
 - Small coherent particles, size: 1-20 nm

3. Precipitation of α–phase from ω–phase
 - Small ω phase particles serve as precursors of α phase precipitation
 \rightarrow precipitates of α phase are tiny and homogeneously distributed
 \rightarrow significant strengthening
ω-phase

- Hexagonal (but not hcp) phase
- Nanometer sized particles
- Created after quenching (ω-athermal)
- Grow during ageing

Transmission electron microscopy

Devaraj et al., Acta Mat 2012
Ti-9Mo
a,b) – quenched from β;
c)-e) – 475°C/30 mins;
f)-h) - 475°C/48 h
β → ω → α phase transformations

- Volume fraction of phases in Ti-LCB alloy studied by X-ray diffraction
- β + ω transforms to α with increasing ageing temperature and ageing time (isothermal annealing)

Ageing at 400°C

Ageing at 450°C

Smilauerova et al., unpublished research
\[\beta \rightarrow \omega \rightarrow \alpha \] phase transformations

- Identified by in-situ methods
 - Differential scanning calorimetry
 - Measurements of electrical resistivity
- \[\beta \rightarrow \omega \rightarrow \alpha \] transformations identified during heating 5°C/min

I. Dissolution of athermal \(\omega \) phase, reversible diffusionless process
II. Stabilization and growth of isothermal \(\omega \) phase – diffuse process
III. Dissolution of \(\omega \) phase
IV. Precipitation of \(\alpha \) phase
V. Dissolution of \(\alpha \) phase
VI. Above \(\beta \)-transus temperature – \(\beta \) phase
ω observed by 3D atom probe

• Observation is based on chemical differences

Deveraj et al., Scripta Mat 61 (2009)
Hardening of Titanium

1. Inertstitial oxygen atoms
 – If oxygen content in pure Ti is increased from 0.18 to 0.4 wt. % →
 – → the strength is increased from 180 MPa to 480 MPa (!)
 – Typical oxygen content in commercial Ti alloys is 0.08 – 0.20 hm. %
 – Higher oxygen content often causes embrittlement
 – Positions of oxygen atoms are correlated to vacancies
 • positron annihilation spectroscopy study

2. Solid solution strengthening
 – α-stabilizing substitutional elements (Al, Sn) strengthen α–phase (Ti-5Al-2.5Sn \rightarrow 800 MPa)
 – Some fully soluble β-stabilizing elements strengthen β–phase (Mo, Fe, Ta), others have negligible effect (Nb)
 – Size of the atoms and electron structure is decisive for this effect
 • Some atoms serve as obstacles for dislocation motion
Hardening of Titanium

3. Intermetallic particles (precipitation hardening)
 – Eg. Aluminides nitrides, carbides, silicide – and many others
 – Size of the particles and their distribution are crucial for the strengthening effect (Orowan strengthening)

4. Dislocation density and grain refinement
 – Forming/working (e.g. extrusion, forging, etc.) can increase dislocation density and cause grain refinement
 – Dislocations cause obstacles to movement of other dislocations causing increase strength
 – Grain and sub-grain boundaries may also act as dislocation obstacles
 – Working must be done at sufficiently low temperatures to suppress extensive grain growth and dislocation annihilation
Hardening of $\alpha+\beta$ alloys

- Sufficient content of Al (or Sn) leads to formation of Ti_3Al particles (when content of Al is above 9 wt. %)
 - Solvus of Ti_3Al particles is approx. 550°C, final annealing temperature must be below this temperature

- Ti_3Al particles are hexagonal and coherent and block the dislocation movement causing precipitation hardening
 - In $\alpha+\beta$ alloys occurs separation of elements during annealing – α-stabilizers diffuse to α-phase, whereas β-stabilizers diffuse to β-phase
 - Intermetallic particles (Ti_3Al) can be created in α-phase due to sufficient amount of α-stabilizer despite overall (average) chemical composition does not allow such precipitation

- Phase boundaries serve as dislocation motion obstacles
 - The smaller are morphological features of respective phases, the bigger is strengthening effect
Hardening of metastable β–alloys

- Interstitial, solid solution and dislocation density strengthening
- Precipitation hardening/phase boundary hardening caused by phase transformation of β-matrix
 - Phase separation – $\beta_{\text{lean}} + \beta_{\text{rich}}$
 - Formation of ω–phase particles
 - Precipitation of α–phase particles
Lecture 2: Conclusion

- Titanium is polymorphous material – two stable phases
 - α-phase– hexagonal close-packed (hcp)
 - β-phase– body-centered cubic (bcc)
- Below β-transus temperature - α phase is formed
- Pure Ti – at room temperature only α-phase
- $\alpha + \beta$ alloys
 - At room temperature mix of phases $\alpha + \beta$
 - α phase formation cannot be suppressed
- Metastable β-alloys
 - After quenching - only β-phase
 - Upon annealing α–phase is formed
- $\beta \rightarrow \alpha$ transformation
 - Martensitic followed by growth ($\alpha + \beta$ alloys)
 - Precipitation followed by growth (β alloys)
- ω phase
 - Nano-sized particles, precursor for α-phase particles precipitation
- Hardening of Ti and Ti alloys
 - Pure ti is hardenend mainly by oxygen content
 - Alloys are hardened by solid solution strengthening, intermetallic particles and particles of other phases
Titanium and titanium alloys

Josef Stráský

Thank you!

Project FRVŠ 559/2013 is gratefully acknowledged for providing financial support.